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ABSTRACT 

This report is a brief handbook on the comparative descriptive statistics of a wide variety of skewed 
probabihty distributions, both continuous and discrete. The aim is to facilitate the comparison of differ- 
ent distributions, for use where random variables are employed without any firm information on their 
distribution. In this situation, it is of interest to look for sensitivity to the distribution chosen. This can 
best be done by running the model with a variety of distributions, which then raises the question of 
how to compare distributions. This work advocates the use of moments and presents the requisite 
equations. As obvious as this approach may appear, many of the equations do not seem to have been 
published previously and some of the results are apparently wholly new. A total of 18 distributions are 
treated in detail, including all of the most commonly used skewed probability distributions. 
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Comparative Descriptive Statistics of 
Skewed Probability Distributions 

Executive Summary 

This Report addresses a technical issue in the current practice of operational analysis 
(OA). Increasingly, OA studies involve simulations of varying levels of sophistication. 
A feature of all simulatioris is the use of random variables, and this immediately raises 
the question of what distribution to employ. Should the random variable be taken as 
uniformly distributed over some range, or should it follow a bell curve with some 
mean and standard deviation, or be exponentially distributed, and so on? Sometimes 
there are methodological or theoretical arguments favouring a particular distribution, 
but often there are not. In their absence, the modeller is forced to make a more-or-less 
arbitrary choice of distiibution, motivated perhaps by ease of use or personal familiar- 
ity. It then becomes interesting to know how sensitive the results of the analysis are to 
the choice of distiibution: if another had been chosen, would the conclusions have been 
different? 

The obvious way of approaching this question is to run the model using a variety 
of distiibutions. One must not, however, substitute one distiibution for another uncri- 
tically. For example, usually the results of a model will be affected by the mean of an 
input variable, so one must match means when changing distiibutions. However, most 
common distiibutions have two parameters, so the requirement of matching means is 
not in itself sufficient. This Report advocates matching distiibution moments: for two- 
parameter distiibutions, one should match means and standard deviations; with three 
parameters, the skewness should also be matched, and so on. As obvious as this ap- 
proach may seem, the requisite equations have not been encountered in any of the texts 
on probability distiibutions examined for this work. 

Hence, this Report gathers together equations for distiibution parameters corres- 
ponding to a given mean, standard deviation and, where required, higher moments of 
a wide range of skewed probability distiibutions. Most of the equations were derived 
during the course of this work; many appear not to have been published before. All of 
the common skewed distiibutions are tieated in detail, including 
• 3 one-parameter distiibutions 
• 11 two-parameter distiibutions 
• 2 three-parameter distiibutions 
• 1 four-parameter distiibution 
• 9 continuous distiibutions with the range zero to infinity 
• 3 continuous distiibutions with a finite range (a to b) 
• 3 discrete distiibutions with a finite range {a to b). 
In addition, 11 lesser-known discrete distiibutions with finite ranges are mentioned, to 
give a flavour of the diversity available. 

The emphasis on finite-range and semi-infinite (0 —» oo) skewed distiibutions 
arose from the original motivation for this work, which was to support the modeUing 
of decision times and times to carry out a given task. There is no obvious interpretation 
for a negative decision time, so it is natural to use distiibutions that are positive defi- 
nite when modelling such quantities. However, the Gaussian distiibution (defined 
from -00 to oo) is also included because it is so widely known and used. 
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1.   Introduction 

In many, perhaps most, studies using random variates, the question of which distribu- 
tion to use is not a significant issue: theoretical or methodological arguments point to 
the right one for the purpose. The issue of comparison between distributions does not 
then arise. In some cases, however, there is no clearly preferred probability distribu- 
tion; the choice is more or less arbitrary and this raises the question of the sensitivity of 
the analysis to that choice. In these circumstances it is important to have a rational 
basis for comparing distributions, so that one is comparing Kke with like as far as 
practicable. The method advocated in this report is to match moments of distiibutions: 
where distributions have a single parameter, this is chosen to equate means; for two- 
parameter distiibutions, means and standard deviations are matched, and so on. This 
seems an entirely obvious approach, yet it is not mentioned in any of the many refer- 
ences examined in the course of this work. As a consequence, the requisite equations 
are not compiled anjrwhere, so this work was carried out to fill the gap. Some of the 
results presented herein are available in texts; most are not. For example, nothing like 
Figures 2.5 or 3.4-3.6 has been encountered in the literature. 

Most of the distiibutions considered in this report have two parameters. Equa- 
tions were derived and are presented herein for parameter values that give a desired 
mean and standard deviation. The differences between distiibutions are then quanti- 
fied by skewness TI3 and kurtosis TI4, which are respectively the third and foturtii mo- 
ments about the mean divided by the third and fourth powers of the standard devia- 
tion. Expressions for skewness and kurtosis in terms of mean and standard deviation 
are presented where possible. Often, the expressions are more or less stiaightforward 
re-arrangements of standard results, but in some cases the equations have no closed- 
form solution; for these, graphs and tables are presented that assist in the choice of 
parameters. 

In addition to the two-parameter distiibutions, three one-parameter, two three- 
parameter and one four-parameter distiibutions are included. For these, equations are 
presented giving the parameters in terms of as many moments as required. 

The focus on skewed distiibutions arose from the original motivation for this 
work, which was to support a study on modelling decision making [1]. The time taken 
to make a decision has a natural definition for positive values only; hence, distiibutions 
of decision time ought to be stiictly zero for t < 0. Further, it has been argued that the 
likelihood of an instantaneous decision is negligible, so the distiibution of decision 
times ought to be zero at f = 0 as well. Most distiibutions tieated herein have these 
characteristics; the two exceptions (Gaussian and exponential) are included because 
they are so widely used. Recentiy, the results reported herein have been applied to a 
study of service times in a queueing-theory model of maritime interception [2]. This is 
another case where one requires the distiibution to be zero for ^ < 0. 
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This work was prompted by studies from the Naval Undersea Warfare Center 
Divfeion Newport advocating the use of the inverse Gaussian probability der^ity as a 
representation for decision times [3,4]. This distribution is not widely known and is 
omitted from several well known texts (e.g. [5-8]) although it was first described over 
half a century ago [9] and its properties have been docimiented for several decades [10 
(ch.l5)41]. In §2 of this report, ite properties are compared with those of many other 
probability-density distributions. The emphasfe naturally falls on other distributions 
on [0,Qo), although the Gaussian distribution is also included because it is so ubiquitous 
and to provide a point of comparfaon with a non-skewed distribution. 

ITie property that makes the inverse Gaussian distribution particularly stiited to 
the description of decision speed, the behaviour of the 'decision rate' or 'hazard rate' at 
long times, is highlighted in §2.3.4. 

As well as speed, decisioiw are characterised by soimdness [1]. Although perhaps 
not essential, it is comm^on for soundness scales to be finite: 0-1 say, or 0-10. The mo- 
delling of soundness is just as likely to be probabilistic as that of decision speed, so 
finite-range distributioi^ are descril^d in §3. Often, soundness is ranked on a discrete 
scale, 0-3,1-5 etc., the so-called 'likert scales'. This is ako amenable to a probabilistic 
treatment; appropriate probabUily dfetributioiw are described in §3.3. 

This work serves as a brief handbook on the comparative descriptive statistics of 
a wide variety of skewed probability distributions, both continuous and dtecrete. The 
aim is to facilitate the comparfeon of different distributioiw. 

2.   Semi-Infinite Distributions 
As mentioned in §1, the inverse Gaussian probability density has been advocated for 
representing decision speed. The basic properties expected of a distribution of decision 
speeds are as follows: 
• The domain of the distribution must not include negative times t 
• The probabiUiy derwity should be zero at t = 0; for otherwfee there is a non-zero 

probability of an instantaneous dedbion. In particular, the exponential dfetribution, 
which has maximum probability density at f = 0, is not suitable, 

• Whether the domain of the probability density should extend to infinity is not clear, 
but tiiere are as yet no data establishing an upper Emit on decision time. Thus, the 
domain of the distribution should be 0 < f < oo, so as to avoid introducing an arbi- 
trary parameter. 

The inverse Gaussian probabUity dtetribution, among others, fulfils these criteria. This 
section presents the main properties of thte distribution and compares it with other 
distributions also satisfying the properties listed above. The feature distinguishing the 
inverse Gaussian probabiHty derwity from the rest—the behaviour of its decision rate— 
is addressed in §2.3,4. 

2.1   The Inverse Gaussian Distribution 
In standard form, die definition of the inverse Gaussian probability density is [10-12] 

£Tlt 2^2* 
(2.1) 
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where the parameters X, ]x. must both be greater than zero. As noted above, the domain 
is 0 < f < 00. By direct calculation, it is found that the mean of the distribution is \x and 
its variance CT^ equals y^/X. Since the function has two parameters, we re-write it using 
the mean |i and standard deviation a as parameters. This is stiaightforward and has 
the added advantage that a little rearrangement simplifies the argument of the expo- 
nential function: 

fiG{t)- 
2nt 

ve exp 
2U    tj 

(2.2) 

where v = \i/a. 
Figure 2.1 shows plots of the distribution for three values of a/jx. As Equation 

(2.2) indicates, the argument of the distiibution scales with ^, so it is useful to plot 
Figure 2.1 with t/\i on the abscissa. Scaling is made complete by plotting the product 
n/iG(0 and labelling the curves with the 'coefficient of variation' s = a/\i = 1/v. 

As may be expected, and as Figure 2.1 shows, the inverse Gaussian distribution 
becomes more symmetiic as a/n -^ 0 and more skewed as a/yi -^ oo. The mode f^ (for- 
mula in Table 2.1 below) lies between zero and the mean n for aU values of a/\i, with 
fjn -> 0 as a/n -> 00. The probability density/jQ(fj„) at the mode rises as either CT/H -^ 0 
or a/fi -^ 00. The minimum value of lifidtj) occurs when a/y = 1/V2 « 0.7071. (This 
does not depend upon \i.) 

As mentioned in §1, the method of comparing the various distributions is to ex- 
amine functions with the same values of \i and a; differences are then be expressed in 
terms of the higher-moment ratios, skewness TI3 and kurtosis r]^. Of course, yet higher 
moments exist, but TI3 and ri4 are usually sufficient to display trends. For the inverse 
Gaussian distiibution, direct evaluation of the integrals concerned gives simple expres- 
sions for Ti3JG and r\^iQ in terms of y and a: 

(2.3) 
Tl4iG = 3 + 15n/;i = 3 + 15(a/^)^. 

CM 

S 00 
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d 

1 

-A A'     ' 1           1 1 

l\-^ i /         \   CT/|I = - 

-\A \o.3 — 

m \o.6\ - 

// 
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- 

r// 1           1 ^ r= ==4== 
1.0 
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2.0 3.0 

Figure 2.1: Examples of the inverse Gaussian distribution. Curves are labelled by values of the 
coefficient of variation a/\x.. 
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2.2   Other Distributions 

This section discusses the properties of the Gaussian distribution and eight semi-infi- 
nite distributions: exponential, log-normal, gamma, bi-exponential, Weibull, log-logis- 
tic, inverted gamma and beta-prime. The list comprises all the best known distributions 
on [0,oo), including all those listed in a widely used text on simulation [7(pp. 299-318)]. 
The Gaussian and exponential distributions are not realistic candidates for describing 
decision speed, but are included because they are so common. The Gaussian also pro- 
vides a point of reference to a non-skewed dtetribution. 

In the following Section, the distributions are compared using the mean p. and 
standard deviation 0 as the parameters, as in Equation (2.2). Hence, the aim of this 
Section is to invert the expressions for n and 0 in terms of the standard parameters. 
This can be done in closed form in all but two cases (Weibull and log-logistic). For 
these two, graphs and tables are presented to facilitate the transformation. Details of 
the inversion are presented in the following subsections. For convenience, expressions 
for the main properties of the distributions are collected in Table 2.1 (pp. 6-7). 

2.2.1   Gaussian Distribution 

The standard form of the Gaussian distribution already uses the mean |i and standard 
deviation 0 as parameters: 

fcm- 
0V271 

exp 
202 

(2.4) 

2.2.2   Exponential Distribution 
This distribution has just one parameter, the mean p., which must be positive. The stan- 
dard form is 

/e(t) = -exp (0 < f < co). (2.5) 

The standard deviation of this distribution equals \i also. 

2.2.3   Log-Normal Distribution 
The standard form of the log-normal distribution is often written using the sj^nbols n 
and o to represent the mean and standard deviation of a notional imderlying Gaussian 
dfetribution (e.g. [6,7,12,13]), rather than of the log-normal distribution itself. This con- 
fusing notation can be simply avoided by adopting other symbob. For example, ODdn 
effll. [5]write 

/l-n(0=- 
:^/M 

exp 
-Qnt-B,f 

26^ 
(0 < * < QO) (2,6) 

where 5, % are the parameters, both of which must be positive. The mean p, and stand- 
ard deviation 0 of the log-normal distribution are given by 

p = exp(4+5V2),       0 = exp(| + 8^/2) ^expis^ ) -1. (2,7) 

These equatiorw can be inverted, leading to the following expression for the distribu- 
tion in terms of p, o: 
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/l-n (t) =    I , -       , exp 
21n(s2 + l) 

(2.8) 

where s = a/\i, the inverse of v. 

2.2.4 Gamma Distribution 

hi standard form, the gamma distribution reads [5] 

fr{t)~^t''''e-''        (0<f<a)), (2.9) 

where the parameters r, 0 must both be positive. r{x) is the usual gamma function [8 
(§6.1.1)]. The equations for the mean [i and standard deviation a in terms of the para- 
meters, 

\i = r/Q,     a2 = r/e2 (2.10) 

are easily inverted, so the distribution can be rewritten using these as parameters: 

where v = ii/a, as for the inverse Gaussian distribution. 
To obtain/p(0) = 0, as required, one must take r > 1. This impUes |a/a > 1. That is, 

it is not possible to have the standard deviation larger than the mean and still retain 
/p(0) = 0. This is in contrast to the behaviour of the inverse Gaussian and log-normal 
distributions. 

2.2.5 Bi-exponential Distribution 

As noted above, the exponential distribution is not suitable for representing decision 
speed because its maximum value Ues at f = 0. This defect can be rectified by a simple 
generalisation: 

/b-e(0 = p^(^""* -e-^')        (0 < t < c«), (2.12) 

where the two parameters a, p must be non-equal and both positive, and one can take 
P > a without loss of generaHty. This is known as the bi-exponential distiibution, also 
as the two-stage hypo-exponential or generalised Erlang distiibution [14(p.448)]. Al- 
though this distiibution has a simple form, expressions for the mean and standard 
deviation in terms of the parameters are rather more complicated than for the distiibu- 
tions tieated so far: 

H = —f, a = -^^ -ti-. 2.13 
ap ap 

Equations (2.13) can be inverted: 

«=^^- P = —^ (2.14) 
1 + V2s2-1 1-V2s^-1 

(s = a/\i, as before), but is not expedient to substitute these equations into Equation 
(2.12). However, relatively simple expressions can be obtained for the mode, skewness 
and kurtosis in terms of s, as shown in Table 2.1. 
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Table 2.1 continued (see previous page for footnotes). 

Log-logistic Inverted gamma Beta prime^ 

Mode t„ n a-l 
fa + 1 

Skewness TI3        Eqn (2.24) 

Kurtosis ri4 Eqn (2.25) 

Behaviour 
atf = 0 

Decision 
rate* h{t) 

/(O) and its first 
[a - IJ deriva- 
tives are zero* 

ap2« i«-l 

/z(oo)* 0 

s^ + l 

4s 

l-s2 

3(1+ 7s^) 

(l-s2)(l-2s2) 

/(O) and all its deriva- 
tives are zero 

v^ + l 7^+2,1^ 

Cj + 1 

(a parameter) 

Eqn (2.37) 

/(O) and its first 
[p - IJ deriva- 
tives are zero* 

(..X)P^.B(,,P,^) 

Equations (2.14) imply that I/V2 < a/\x. < 1, so that a and p are real and positive. 
Hence, as with the gamma distribution, the range of standard deviations that can be 
obtained for a given mean is restricted; the range available with the bi-exponential 
distribution is particularly small, as illustrated in Figure 2.5 below (p. 14). 

2.2.6   Weibull Distribution 

The standard form of the Weibull distribution is [5] 

/w(0 ̂ l^t'^-^-iilo.f (0 < f < 00) 
a^^ 

(2.15) 

where the parameters a, p are both positive and p > 1 is required to obtain ^(0) = 0.(®) 
As with other distributions, expressions for the mean and standard deviation in terms 
of the parameters can be obtained, but in this case they cannot be inverted in closed 
form. The expressions are: 

(j, = ar 1 + CT = ajr|l + - 
/ 

1 + - 
P, 

(2.16) 

Since we consider only p > 1 and since T{x) < 1 in the range 1 < x < 2, with a minimum 
at r(1.46163) = 0.885603 [8(p.259)], it follows tiiat 0.8856a < ^i < a. That is, tiie mean Hes 
within 12% of the value of a. 

It is clear from Equations (2.16) that the ratio s = o/]i depends on p alone. Using 
the recurrence and duplication formulae for the gamma function [8(p.256)], one obtains 

52 = 
^a^2 

VM- 

22/Pr (1 1 
—+— 
2  p 

V^r|i+- 
P 

-1 (2.17) 

r 

(^) Note that a and p are often interchanged, e.g. [6,7]. 
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From this and the properties of T{x), one sees that s —► 0 as p —> cx) and s -^ 1 as p -♦ 1. 
That is, as with the gamma and bi-exponential distributions, it is not possible to obtain 
CT > ^ while retaining the desired behaviour near f = 0. 

Expressions similar to Equations (2.16) for skewness 113 and kurtosis r|4 read: 

(2.18) 

(2.19) 

There seems little useful that can be done to reduce these equations further. It can be 
seen from these equations and those in Table 2.1 that a acts purely as a scaling para- 
meter. 

Figure 2.2 shows plote of properties of the Weibull distribution as a function of 
the shape parameter p. The practical value of thfe figure lies in its facilitation of the 
inversion of Equations (2.16) to obtain p for given values of 0/^, a necessary step in ttie 
comparison process. Figure 2.2 shows that 1/p « o/n, but that a/p. slightly exceeds 1/p 
except at zero and unity. Table 2.2 lists values of 1/P to six decimal places, obtained by 
numerical inversion of Equation (2.17), for selected values of a/\i. 
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Figure 2.2; Various properties of the Weibull distribution as afiinction of the parameter ^for 
the case p > 1. The curves slimv the ratios t^a, \i/a and a/\i, wliere t^ is the mode, \i the mean 
and a the standard deviation, and values of the shexvness TI3 and kurtosis r]^. The skewness and 
kurtosis have been scaled by their respective values ata = lto give convenient ranges of values 
for plotting. 
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Table 2.2: Values ofl/^ to 6 decimal places for various values of<j/n. 

c^/^       VP 
0.05 0.040081 
0.10 0.082281 
0.15 0.126471 
0.20 0.172491 
0.25 0.220157 

oAil/P CT/R       1/P 
0.30 0.269268 
1/3 0.302707 
0.35 0.319612 
0.40 0.370972 
0.45 0.423133 

0.50 0.475885 
0.55 0.529030 
0.60 0.582383 
0.65 0.635775 
0.70 0.689055 

<y/Vi       1/P 
0.75 0.742087 
0.80 0.794755 
0.85 0.846958 
0.90 0.898612 
0.95 0.949645 

2.2.7   Log-Logistic Distribution 

The logistic distribution has a sech^ t form, which has obvious similarities with the 
Gaussian distiibution. The analogy suggests the definition of the log-logistic distribu- 
tion: it has the same relationship to the logistic distiibution as the log-normal has to the 
Gaussian [10(§23.11)]. The standard form of the density function is [7] 

/l-l(0 = aP" 
,a-l 

(f«+P«)' 
{0<t< oo). (2.20) 

where, for the general distiibution, the parameters a, p are both positive. However, as 
with several other distiibutions, the requirement that/i.i(0) = 0 imposes an additional 
restiiction on one of the parameters. In this case, one must have a > 1. 

Yet further restiictions on a are placed by requirements that the moments of the 
distiibution be finite. The rth moment \ij. about the origin is given by 

iir=^' ¥ 
r/a 

(1+yy 
-dy. (2.21) 

an integral that is infinite unless a > r. Hence, a finite standard deviation requires a > 
2, a finite skewness a > 3, and so on. Since we plan to compare log-logistic with other 
distiibutions by specifying values of mean and standard deviation, it follows that we 
are interested only in those distiibutions with a > 2. 

Equation (2.21) is a standard integral [15(T|856.07)]; its evaluation for r = 1,2 leads 
to the mean and variance: 

7tB 7t 
|x = —^cosec—, 

a a 
a2=^ 

a 
^ 2n     TZ 2 71 zcosec cosec — 

a     a a 
(2.22) 

As with the WeibuU distiibution, these equations cannot be inverted in closed form. 
The value of a is the solution to the equation 

_ CT _ a.     71   ^ 
—tan 1; 
71      a 

(2.23) 

this is shown in Figure 2.3 as the curve labelled 'a/|j,'. Values of a for selected values of 
CT/^ are listed in Table 2.3. 

Expressions for the skewness and kurtosis are obtained from Equation (2.21) for 
the appropriate values of r. Simplified as far as seems useful, the results are 

Sis^+lf          3s2+l ^^^^^ 
^31-1 = ^r: T—m 3—' (2-24) 

s^[4-sec^(7i/a)] 
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figwre 2,3; Various projmrtks of the hg-hgistk distribution as a function of the parameter a 
for the cax a > 2. The curves shmo the ratios t^/p^ ^i/p and a/n, where t^ is the mode, |i the 
mean and a the standard dematbn, and values of the shewness r\^ and kurtosis t]^. 

Table 2.3: Values of a to six significant figures for various values ofq/p.. 

g/^t a g/^t g/^^ fj/n g/^ a 
0.05 36.3304 
0.10 18.2465 
0.15 12.2542 
0.20 9.28422 
0.25 7.52257 

0.30 6.36448 
1/3 5.7«29 
0.40 4.95149 
0.50 4.13744 
0.60 3.61953 

0.70 3.2«02 
0.75 3.13310 
0.80 3.01822 
0.90 2.83440 
1.00 2.69535 

1.10 2.58774 
1.20 2.50287 
1.40 2.37947 
1.60 2.29595 
2.00 2.1^80 

3.0 
4.0 
5.0 
6.0 

10.0 

2.08824 
2.05007 
2.(B218 
2.02240 
2.00809 

nm 
(s2 + if 12(s2+l) 68^+3 

^[l-sec^in/aj]   s*[4-sec2(7t/a)] 
(2.25) 

These are ako plotted in Figure 2,3, As tWs Figure shows, the higher moments of the 
log-logistic distribution are rather large compared with distributions corwidered so far. 
Equations (2.23)-(2,25) also show that the parameter p is simply a scaling parameter. 

Figure 2,3 indicates that the full range of values of a/n are accessible only if infi- 
nite higher moments are tolerated. If one wishes to consider only distributions with 
finite skewness or kurtosis, then this introduces an upper limit on a/pn <s/pi< 0.80869 
for finite skewness and cr/|J < 0.52272 for finite kurtosis. 

2,2.8   Inverted Gamma Distribution 
The inverted gamma distribution is the distribution of a random variate whose recipro- 
cal is gamma-distributed. The standard form of the distribution is [12(§18.4)] 

/i-rW = r(c)t' c+1 exp (0 < t < oo). (2.26) 

10 
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where the parameters X, c must both be positive. Law and Kelton refer to this distribu- 
tion as 'the' Pearson type V distribution [7], but it is actually just one example of this 
class of distributions [10(§12.4),16(ch.4)]. 

For this distribution, the requirement/j.p(O) = 0 imposes no additional constraint 
on the parameters; however constraints arise when moments are calculated: for the rth 
moment to be finite, one requires c > r, as with the parameter a of the log-logistic dis- 
tribution. Expressions are much simpler in the case of the inverted gamma distribution, 
so that closed-form expressions can be obtained with |a, CT as parameters. The transfor- 
mation is 

X = n(v2 + 1),       c = v2 + 2, (2.27) 

where v = p./a, the reciprocal of the coefficient of variation. The resulting expressions 
for mode, skewness and kurtosis are listed in Table 2.1 (p. 7). The probability density is 

[^(v2+l)] v'^+1 

r(v2+2)r+3 
v2+l^ 

fi-T{i)=-^,—r-^Tz^^V -^^^— • (2.28) 
t   J 

As with the log-logistic distribution, the whole range of values of a/n is access- 
ible provided that infinite higher moments are tolerated. If one wishes to consider only 
distiibutions with finite higher moments, then one requires CT/H < 1 to keep the skew- 
ness finite and a/^ < 1/V2 to keep the kurtosis finite. 

2.2.9    Beta-Prime or Generalised F Distribution 

The P' distiibution is derived from the p distiibution (§3.2 below) by a transformation 
of the argument. It is the only three-parameter distiibution on [0,oo) considered in this 
report. The standard form is [7,10(§25.7,§27.8.1)]0') 

where all three parameters p, q, x must be positive and B(p,q) is the standard beta func- 
tion [8(§6.2)]: 

B,,,,.™. ,,30, 

The requirement /p'(0) = 0 imposes the constiaint p >1; further constiaints arise from 
the moments: a fmite rth moment is obtained only ii q > r. Equation (2.29) is a gener- 
aHsation of the much studied F distiibution of variance ratios [10(ch.27)].(c) 

With three free parameters, one can specify the skewness as weU as mean and 
standard deviation. An expression for the rth moment |j,^ about the origin can be readi- 
ly derived: 

,(p + r-l)!(^-r-l)! 

^^       {p-mq-iy.   • ("-"'^ 
Working from this, the formulae for the three moments in terms of the parameters are: 

O') As with the inverted gamma distributiori. Law and Kelton [7] misname this distribution, 
calling it 'the' Pearson type VI distribution, whereas it is but one example of the class [10 
(§12.4,§27.7),16(ch.4)]. Johnson et al. [10(p.345)] present equations for the inversion of a 4- 
parameter generalisation of this distribution. 

(^) The F distribution is obtained by setting T = q/p, i.e. it has two parameters only. 

11 
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^1 = 

xp 

m 

_2^% pjp + q-l) 

iq-lfiq-2)' 
,2p + q-l^ 
spiq-S)' 

(2.32) 

(2.33) 

where s = a/\i, as before. Equation (2.33) is independent of the parameter %, and so is 
identical to the expression for the skewness of the F distribution, since the F distribu- 
tion differs from the P' dfatribution only in its % values. Equatioiw (2.32) yield a simple 
result for s: 

2_p+q-l 

P(f-2) 
(2.34) 

Recalling that thfe expression assumes q>2 and that we are also taking p >1, we see 
that Equation (2.34) implies 0 < o/|x < oo; that is, the full range of s values is available. 
However, the inclusion of Equation (2.33) implies a further restriction of the range of q 
to f > 3, which then restricts the range of CT/^I to 0 < cj/n < VS. The same argument ap- 
phed to Equation (2.33) shows that TI3 must be positive; that is, negative skewness is 
not accessible for this distribution. 

Equations (2.32) and (2.33) are sufficiently simple for the inversion to be relative- 
ly straightforward: 

1 + ST13-S 

s n3-sn3+4s 
9 = 3+2 

s2+l 

ST13-2S^ 
(2.35) 

with X being calculable from the expression for |j once p and q are known. The require- 
ments p>l,q>3 put restrictions on values of T]3 that may be validly chosen: 

T|3 >max 2s, 
6s2-2^ 

3s- ■s'j 

(2.36) 

This aitalysis leaves the kurtosis TI4 as the first moment available for comparison 
with other distributions. Derivation shows that the expression for TI4 is also indepen- 
dent of the parameter % and so is the same expression as for the F distribution; that is 

Ti4=3 + 6- 
5q-n 

-+6- 
iq-lfiq-2) 

iq-SKq-^)    >(p+9-l)(f-3)(f-4) ^^'^^ 

where it is assumed that q>4. (The kurtosis is infinite for q < 4.) This further restriction 
on q carries with it the implicatior^ 

0<s<V2, Ti3<4s + 2/s. (2.38) 

2.3   Comparisons and Comments 

2.3.1    General Distribution Properties 
Table 2.1 (pp. 6-7) comprises a comparison of sorte between the distributions. This 
Section makes a more graphic comparison through plots of the distributioiw and their 
properties. From these plots and Table 2.1, several specific points of comparison are 
noted. 

Figure 2.4 shows examples of d^tributiorw with the same mean and standard 
deviation. Comparison between the distributiorK is made through three properties: the 

12 
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  inverse Gaussian 
  log-normal 
  gamma 
  bi-exponential 
  Weibull 
  log-logistic 
  inverted gamma 
  beta prime 
  Gaussian 

Figure 2.4: Examples of nine continuous distributions with mean \i of 1.0 and standard devia- 
tion a of (a) 0.50, (b) 0.90 and (c) 1.50. The bi-exponential distribution is omitted from panel 
(a) because it cannot have this combination of mean and standard deviation (§2.2.5); several 
distributions are omitted from panel (c) for the same reason. The skewness values chosen for the 
^'distribution are (a,b) 2.0, (c) 12.0. 

ratio t^/\i of mode to mean, the skewness TI3 and the kurtosis 114; values of these quan- 
tities are listed in Table 2.4. In view of their importance. Figure 2.5 compares these pro- 
perties in a consistent manner by plotting their values as a fxmction of c!/\i.(.^) The P' 
distribution is different from the others in having a third parameter, which is taken in 
§2.2.9 as being given by the skewness. The range of vaHd skewness values and corres- 
ponding ranges of t^/\i and r\^ are shown as shaded areas in Figure 2.5. 

Figure 2.4 indicates the extent to which the distributions resemble one another, 
particularly at low a/n. As Figure 2.5 shows, the properties of all except the WeibuU, 
log-logistic and p' distributions approach those of the Gaussian as CT/H ^ 0. However, 
the following points of contrast and difference are noted: 
• The inverse Gaussian, log-normal and log-logistic distributions have quite similar 

behaviour near t = 0 (Fig. 2.4). Compared with these, the inverted ganuna distribu- 
tion approaches zero more quickly and all the rest less quickly ast-*0. 

i^) For the Weibull and log-logistic distributions. Equations (2.16) and (2.23) cannot be inverted 
to obtain closed-form equations for the parameters as a function of u/\i, but it is clearly pos- 
sible to construct plots of the distribution properties against cs/\i from the data in Figures 2.2 
and 2.3. 

13 
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Table 2.4: Values of the ratio t,„/p. of mean to mode, sheioness r\^ and kurtosis T\4for the distri- 
butions shmvn in Figure 2.4* 

a/n = 0.5 0 ■/H = 0.9 CT/ji = 1.5 

W^l 1l3 ll4 WM % ^4 W^^ ns Tl4 

inverse Gaussian 0.693 1.50 6.75 0.359 2.70 15.2 0.145 4.50 36.8 
log-normal 0.716 1.63 8.04 0.411 3.43 29.4 0.171 7.87 209 
gamma 0.750 1.00 4.50 0.190 1.80 7.9 - - - 
bi-exponential - - - 0.257 1.96 8.8 - - - 
WeibuU 0.830 0.57 3.13 0.121 1.70 7.2 - - - 
log-logistic 0.805 3.86 244.0 0.623 oo 00 0.489 00 00 

inverted gamma 0.714 2.67 22.0 0.528 18.9 00 0.419 00 <x> 
beta prime 0.722 2t 12.0 0.249 2t 9.6 0.033 12t 00 

Gaussian 1.000 0 3.0 1.000 0 3.0 1.000 0 3 

* A dash indicates that the value of CT/H is not valid for that dfatribution. 
t Chosen parameter value. 

T—I—1—I—I—I—I—I—I—I—1—I—I—I—T 

(a I mode relative ^\ 
to rrean V^'*. 

I   I 

  inverse Gaussian 
  log-normal 
——— gamma 
............. bi-exponential 
  Weibull 
  log-logistic 
  inverted gamma 
  Gaussian 

• exponential 
beta prime 

Figure 2.5: Comparison ofxveral properties of the continuous distributions: (a) ratio t^ja of 
mode to mean, (b) sheztmess % and (c) kurtosis TI\^ are shown as a Junction ofa/pL. Note that the 
gamma and Weibull distributions are limited toO< or/^ < 1, and the bi-exponential distribution 
to I/V2 < G/H < 1. The exponential distribution has a/n = 1 only. The P' distribution has three 
parameters, and so its properties have a range of values for any given valve ofa/\i. Skeivness is 
taken as the third parameter; the shaded region in panel 0) shows the range o/rij values satisfy- 
ing Equations (2.36) and (2.38). Tim shaded areas in the other panels indicate the corresponding 
ranges of values oft^\i and r\^ although this representation does not shoiv the detailed corres- 
pondence behveen points in these ranges. 
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• This difference in behaviour is due to the behaviour of the derivatives of the distri- 
butions ast = 0. There is a clear distinction between those that have all derivatives 
zero at regardless of parameter values and those for which only low-order deriva- 
tives are zero (Table 2.1). Only the inverse Gaussian, log-normal and inverted gam- 
ma distributions fall into the first category. 

• In general, the inverse Gaussian distribution is less peaked and falls less quickly as 
f -> 00 than the log-logistic and inverted gamma distributions, with the opposite 
applying for all the other distiibutions (Fig 2.4). 

• The Weibull distiibution is unique in having regions of a/n where the mode Ues at 
larger t values than the mean, the skewness is negative and the kurtosis is less than 
the value of 3.0 that applies to the Gaussian (Fig. 2.5). Of these three features, one is 
shared by the log-logistic distribution, for which t^/^ > 1 at small values of a/ii. 

• The Weibull distiibution is also unique in that its skewness remaiiis non-zero as 
a/n -> 0 (Fig. 2.5c). 

• As G/\I -> 0, the kurtosis of most distiibutions approaches 3.0, the value for the 
Gaussian distiibution. The Weibull and log-logistic distiibutions are the two ex- 
ceptions to this behaviour (Fig. 2.5d). The log-logistic distiibution does not have a 
kurtosis as small as 3.0 for any values of its parameters. 

• The log-logistic and inverted gamma distiibutions have markedly higher skewness 
and kurtosis values for a given value of G/\I than the other distiibutions. The only 
exception to this statement is the P' distiibution, for which the skewness can be 
chosen over a wide range as desired. The resulting values of kurtosis for the P' dis- 
tiibution also span a wide range. 

2.3.2    Limits on Ranges of Coefficients of Variation 

A significant outcome of the discussion in §2.2 is the identification of limits on the ac- 
cessible values of coefficients of variation a/yi. These limits all bear on the question of 
which distiibutions are applicable to a given application. Because of their importance, 
the results are collected in Table 2.5. 

Table 2.5: Accessible ranges of coefficients of variation for the distributions considered in §2.2. 

Distribution range of s = ci/\i 
inverse Gaussian no limit 
Gaussian no limit 
exponential s = l 
log-normal no limit 
gamma S<1 

bi-exponential 1/V2 < s < 1 
WeibuU S<1 
log-logistic no limit 
log-logistic, finite skewness s < 0.8087 
log-logistic, finite kurtosis s < 0.5227 
inverted gamma no limit 
inv. gamma, finite skewness S<1 

inv. gamma, finite kurtosis s < 1/A/2 

beta-prime no limit 
beta-prime, finite skewness s < 1/V3 
beta-prime, finite kurtosis s < 1/V2 

15 
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2.3.3   Fifth and Higher Moments 

A recent study examined the effect of varying the dfetribution of service times in the 
application of queueing theory to tihe modelling of maritime interception operations 
[2]. In the course of this study, it was observed that the exponential distribution gives 
results noticeably different from the other distributiorw studied, which included the 
inverse Gaussian, log-normal and gamma distributior«, among others. One may seek 
an explanation for this in the behaviour of the higher moments. The distributions 
concerned are the inverse Gaussian and log-normal, since these were the only two 
included in Ref. 2 that can have a = \i, a property characteristic of the exponential 
distribution. The values of skewness and kurtosk of the three distributions (Table 2.1, 
p. 6; Figs 2,5c,d) are not different enough to explain the effects observed in Ref. 2, so it 
is interesting to look at yet higher moments. It turns out that general expressions for 
these are available or can be readily derived. 

The quantities of interest are the rth moments n^ about the mean and the rtix 
moment ratios i\/. 

lir = £it-V^ffmt' % = ^M (2.39) 

the second being flie natural generalisation of skewness and km-tosis. These quantities 
can be readily evaluated for the exponential distribution, giving 

%e-£(-ir'fc!fl)        (^^3), (2.40) 

where 
k=0 ^ 

r\ r! 
fc;   klir-k)l 

(2.41) 

is the binomial symbol. 
For the log-normal dfetribution, Johnson et al. [10(§14.3)] give a formula flie rth 

moment about the mean. Setting o = |i in this expression, one finds 

%I-n = ±i-lHl)2^^-^^^-^-^y^        (r>3). (2.42) 

For the inverse Gaussian distribution, BvaiK et al. [12] give an expression for the 
rth moment about the origin. This can be converted to the rth moment about the mean 
by a standard transformation [12]. Once again setting CT = p., one obtains 

nriG =(-l)'-^(r-l)+y (-l)^(ir"E^    (y-fc+?-l)i ^y>3j (2.43) 
^ W to (r-fc-l-l)!l!2« 

These three quantities are compared in Figure 2.6 up to r = 10. The impetus for 
this comparison was a study in which use of the exponential distribution gave results 
significantly different from the other two [2]. However, if one distribution can be said 
to behave differently from the others in Figure 2.6, it is the log-normal rather than the 
exponential. Clearly, the explanation of the observed effect must be sought elsewhere. 
One possibility concerns modes (Fig. 2,5a): the mode of the exponential distiibution is 
at f = 0; for the other two it lies at 0.303 p. and 0.354 p. (inverse Gaussian and log-normal 
respectively wilh CT = p). Another possibiHty is the decfeion rates, discussed in the next 
Section. 
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Ti^re 2.6: Values of the rth moment ratios r\j. of the exponential distribution and the inverse 
Gaussian and log-normal distributions with a = \i. Note the logarithmic scale on the ordinate. 
The points ati - 3 and r = 4 are the skewness and kurtosis respectively. The lines are intended 
solely as guides to the eye. 

2.3.4    Decision Rate 

In the context of distributions of decision times, the decision rate h{t) is the probability 
density of a decision occurring at time t on the condition that a decision has not occur- 
red at times earlier than t. That is, it is given by 

h{t) _ m (2.44) 
l-F(i) 

where F(f) is the cumulative probability corresponding to the probability density/(i): (e) 

m=\lmdt'. (2.45) 

The quantity defined in Equation (2.44) has also been termed 'hazard rate' [3,12,13,17], 
'failure rate' [12,17-19] and 'force of mortaUty' [12,13]. It is widely used as a means of 
classifying distributions (e.g. [10(§33.2),19]). 

Many of the probability distributions considered here have surprisingly simple 
expressions for their decision rate, albeit in terms of a variety of special fimctions. The 
inverse Gaussian is not one such; its decision rate is [18] 

/IG(0 hiGit) = 
0[v(l-f^)V^]-e2v o[-v(l + f/^)V^] 

(2.46) 

where 0(i) is the cumulative probability of the Gaussian distribution with mean of zero 
and unit standard deviation. 

The expressions for the decision rate, simple or otherwise, are collected in Table 
2.1 (pp. 6-7). The point leading to an argument for using the inverse Gaussian distribu- 
tion to modelling decision speed concerns the behaviour of h{t) over its domain and 
particularly as f ^^ oo. Surveying the various distributions, we see that: 

(^) The lower limit of the integral must be taken as - oo for two-sided distributions such as the 
Gaussian. 
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• The exponential dfetribution has a constant decision rate equal to 1/ (i. 
• All distributions other than the exponential and Gaussian have ft(0) = 0,W 
• The Weibull distribution with p > 1 (the case of interest in this Report) and P' distri- 

bution have monotonically increasing decision rates with no upper limit. 
• The bi-exponential distribution and gamma distribution with r > 1 also have mono- 

torucally rising decision rates, but they asymptote as f ^ «) to % g = a and ftp = 0 = 

Except for the property h{0) = 0, none of this behaviour seems realistic in a model of 
decision rate. As the following dot points explain, it is likely that real-life decision rates 
rise from zero at f = 0 to a maximum value and then decrease to a non-zero value as 

• The rate should be low initially while tiie decision maker assesses the situation. 
• It would then rise as the decision-maker's situation awareness increases and recog- 

nition-primed decisions [1] are made. 
• This would be followed by a decline as the 'easy' decteioi^ are taken, leaving the 

more difficult ones to be dealt with. 
• However, the decision rate ought not to decline to zero; while ever a decision re- 

xamns to be made, one expects a non-zero probabiUty that it will be made. 
Of the distributions in Table 2.1, only the inverse Gaussian dfetribution has a decision 
rate that tises from zero, peaks and tihen declines to a non-zero value as f -» ». That is, 
only the inverse Gaussian distribution fulfils all of tiie requirements. This is somewhat 
remarkable, in view of the diversity of distributions compiled in Table 2.1. 

Figure 2.7 shows tfie time dependence of tiie decfeion rate for three dfetributions 
wifli a = n, being the three distributions discussed in the previous Section. Decision 
rate provides another aspect that distinguishes the exponential dfetribution from the 
other two. 

i. 

I         * 

5 \                  exponential 

\''''--^~___^^^ inverse Gaussian ~ 
> 
i \ 

log-normal '   ■ ■— —  

> 1         1         1         1         1         t ' 

^/^^ 
20 30 

Figure 2.7: Time dependence of decision rates Mt) for three distributions loith a = n.To exploit 
scaling behaviour, (Aft) is plotted against t/|i. The product phft) for the log-normal distribu- 
tion asymptotes to Tero ast-^ m; that of the inverse Gaussian distribution asymptotes to 0.5 (in 
the case a = |i). 

© For the gamma and Weibull distributions, this is true only for parameter values of interest in 
tiiis report, i.e. those giving s < 1. (When s = 1, both distributions degenerate to the exponen- 
tial distribution and, for s > 1, both start at h{0) = <» and fall monotonically as t ^^«.) 
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3.   Finite-Domain Distributions 

The initial interest in distributions on a finite domain arose from considerations of mo- 
delling decision soundness, since soundness scales typically are finite. If the scale is 
continuous, the p distribution is useful because of the wide range of distiibution shape 
available. Often, soundness scales are discrete ('Likert scales'), so there is interest in 
discrete probability distributions from that point of view. Both these topics are discuss- 
ed in this Section, but first the following observation is addressed. 

Table 2.1 and Figure 2.5(c) show that the Gaussian distiibution has a kurtosis of 
3, independent of the value chosen for the standard deviation, and that almost all other 
distiibutions have larger kurtosis. The sole exception is the Weibull distiibution for a 
ILtnited range of values of p, and even there the minimum value available is -2.71, not 
much less than 3. In the interests of exploring a wide range of behaviour, it may be use- 
ful on some occasions to use distiibutions with markedly lower kurtosis than that of 
the Gaussian, even if their other properties make them unlikely candidates for, say, a 
reahstic description of decision times. 

3.1   Simple Low-Kurtosis Continuous Distributions 

This Section presents properties of three simple distiibutions, two of which clearly 
have rather lower kurtosis that the Gaussian distiibution. Their definitions are given 
below and their properties are collected in Table 3.1. 

3.1.1    Impulse Distribution 

The impulse or deterministic distiibution has a single parameter, its mean n, and is 
defined by 

/i(0 = S(f-^), (3.1) 

where 5(x) is the impulse symbol, also known as the Dirac delta function. The effect of 
Equation (3.1) is that |i is the only possible value for t; the probability of obtaining any 
other value is stiictly zero. The corresponding cumulative probability (Eqn (2.45)) is 
the unit step ftmction located att = n. 

Table 3.1: Properties of three simple probability density functions with finite domain. 

Impulse Uniform 

Range of s = :J/H s = 0 s<l/^ 

Mode tj^ M none 

Skewness 113 0 0 

Kurtosis TI4 imdefinedt 9/5 

Decision 
rate h{t)i 8(f-n) 

    (a<t<b) 
b-t   ^ ' 

0 (otherwise) 

Triangular 

s< 1/V8 to 1/V2 

^m 

Eqn (3.7) 

12/5 

2(f -a) 

{h-a)tja-t  +2at-ah 

2 
b-t 

0 

{a<t<t^) 

itm^t<b) 

(otherwise) 

' Depending on ri3, see §3.1.3. t See §3.1.1. * See §2.3.4. 
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It may seem that this distribution has the smallest possible kurtosis, namely zero, 
since all momente about the mean are zero. However, ihe kurtosis is defined as the 
ratio of two such moments, the fourth to the square of the second, and it turns out that 
the result is strictly undefined. To see this, consider the common method of introduc- 
ing the impulse symbol using a limiting sequence of appropriate functions [e.g. 20(ch. 
5)]. Choosing a sequence of rectangles gives a kurtosis of 9/5; a sequence of triangles 
gives a value of 12/5; one of Gaussians gives 3, etc. Since all these sequences are held 
to represent exactly the same object, the impulse symbol, it follows that ite kurtosis is 
not a well-defined quantity.Cs) Nevertheless, there is no doubt that the impulse distri- 
bution represents an extreme of behaviour among probabUity density functions, and 
tlm in itself makes it useful in some circumstances. 

3.1.2   Uniform distribution 

The imiform distribution, perhaps the simplest of all distributiorw, has a kurtosis of just 
9/5, the lowest encountered in this work among the continuous distributions.^ The 
probability density is 

-^      {a<t<h) 
/«(*)=&-« (3.2) 

0 (otherwise) 

where we require fl > 0 to ensure that^(0) = 0. The m^ean and standard deviation are 

H = - 
a+b b-a 

(3.3) 
2 V12 

Rewritten using cy, fi as parameters. Equation (3.2) is 
i 

/„(()=   2a^/3        ^^ ^ (3.4) 

0 (otherwise). 

Hence, the requirement a > 0 places a limitation on the values of s = o/ji that can be ob- 
tained: s < 1/^3. The imiform distribution does not have a mode—it has no peak. Other 
properties are listed in Table 3.1. 

3.1.3   Triangular Distribution 

The triangular distribution has probaHHty density that is zero for t < a, rises linearly 
from f = fl to the mode fj^^, falls linearly from t = tj^to zero at t = b and is zero thereafter: 

2(f-fl) 

/t(0- 
(&-«)(tm-«) 

2(t-fl) 

(&-fl)(fm-«) 

0 

ia<t<t^) 

(t^<t<b) 

(otherwise). 

(3.5) 

(g) The skewness of the impulse distribution is well defined. All valid limiting sequences must 
be sequences of functions that are symmetric about n, and hence all agree Siat the skewness 
is zero. 

W Only the discrete uniform (§3,3,1) and P-binomial distributions (§§3,3.4 and 3.3.5) have lower 
accessible kurtosis values. 
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where a > 0 to keep /^(O) = 0. Equation (3.5) is a generalisation of the frequently antho- 
logised symmetric triangular distribution, which is obtained by setting t^ = {a + &)/2. 
The mean and standard deviation of the general distribution are listed in tabulations 
[7,12], but the higher moments seem not to have been previously published. The mean 
and variance are 

IX,-       -       , at . (3.6) 

Straightforward, though lengthy, calculation gives the skewness as 

_2{a^ + tj +b^)-3(a^t^+atj + ah + ab^ + b'^t^+btj) + 12abt^ 
Tl3t 5 . id./) 

The kurtosis is r\^, = 12/5 regardless of the parameter values. The r[^, value is weU known 
for the symmetric triangular distribution, but it does not seem to have been previously 
recognised that it applies in general. (0 It is a most remarkable result. It means that the 
skewness can be varied while holding mean, standard deviation and kurtosis constant, 
despite the fact that the triangular distribution has just three parameters. This property 
seemis to be unique among probability distributions. It recentiy proved useful in a 
study of the effect on a queueing system of varying service-time distributions [2]. 

The inversion of Equations (3.6) and (3.7) is algebraically challenging, but was 
performed with the aid of a computer algebra package. The result is 

fl = Ht -G,^cost,-(51^/6sinb,, 

*m =Ht -<7t^cos^ + atV6sin^, (3.8) 

b = n, +2CTt.V2cos^, 

where the auxiliary angle ^ is given by 

^ = larctan^^^^^. (3.9) 

To evaluate Equation (3.9) appropriately, the result of the arctan function must be 
taken in the range [0,n], which is not the usual range assumed by calculators and 
software routines. That is, 113^ = 0 corresponds to ^ = 71/6 and negative values of 113^ 
correspond to n/6 < ^ < n/3. 

In the course of the derivation of Equations (3.8) and (3.9), one finds that the 
available range of skewness values is limited to 

Jo 
hstl^-^; (3.10) 

unlike the case of the P' distribution, negative skewness is accessible. The limits cor- 
respond to the 'sawtooth distributions': n]^, = —Js/S (^ = n/3) when t^ = b and 113^ = 
+V8/5 {t, = 0) when t^ = a. The first line of Equation (3.8) implies a limit on the value 
of CT from the requirement that a > 0: 

(0 Johnson et al. [10(§26.9)] quote a formula for general moments about tj^. A)^angar [21] gives 
an expression for moments about the mean in terms of moments about t^, but evaluates it 
for the symmetric distribution only. 
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_ CT^    cosec(§+ji/6) 

~ fit " >/8 
(3.11) 

That is, the value of the limit depends on the chosen skewness: the limit is quite low for 
maximum negative skewness (s^ < 1 A/8 when ■^'^^ = -^/8/5) and rises as rx-^^ is increas- 
ed, reaching Sj < 1/^2 when r|3j = +^m/5. 

3.2   The General Beta Distribution 

The general p distribution is a very general finite-domain continuous distribution. 
Having four parameters, a wide range of curve shapes is encompassed. Its standard 
formis[10(ch.25)] 

my B(p,^)(&-fl)P+?-l 

0 

{a<t<V) 

(otherwise). 

(3.12) 

where B^,<j) is the beta function (Eqn (2.30)) and p, q must both be positive. We colli- 
der only those distributions that are finite at both end points, which implies p>l,q>l. 
In addition, we require fl > 0, as usual. The case p = 1, ^ = 1 is exactly the uniform distri- 
bution on [a,b], and the cases p = l,q = 2 and p = 2,q = l are the two sawtooth distribu- 
tions mentioned in §3.1.3. Obviously, tiie kurtosis of the p distribution is low for at 
least part of ite parameter space. 

The properties of the p distribution are well known [10(ch.25),13(ch.l4)]. The 
mean p. and variance cr^ are 

H = fl + (b-a)p 
p + q 

o2.. 
(h-afpq 

(p + q) ip + q + 1) 

the skewness TI3 and kurtosis 114 are 

„ _'HBZA\V±3±L 
p + q + 2%     pq ni 

J{p + q + l)[2{p-qf+pq{f + q + 2)]^ 
pq{p + q + 2)ip + q + 3) 

(3.13) 

(3.14) 

••m ■■a + - (3.15) 

and, for the case p>l,q>l, the mode f^ is 

(b-a)ip-l) 
p + q-2 

Following the theme of this Report, we wish to invert Equations (3.13) and (3.14) to ob- 
tain expressions for a, h,p, qm. terms of \x, 0, T|3, TI4. Of tiie distributions included in 
thte Report,(J) the P distribution is the only one where such expressions^ have been 
found elsewhere [10(§25.4))]. In terms of the auxiliary variables 

0) See ako footnote (b) (p. 11). 
W As Johnson et al. note [10(§25.4)], sometimes values of a, b are set by external considerations 

and the requirement is to choose p, q to give desired values of p., a. This is a relatively simple 
problem, the solution to which is 

(n-a)(b-n) b-p. in-a)ib-n) 
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-6- ^4-"Ha -1 
3ri32-2Ti4+6 

R (r + 2)r]3 

V(r+ 2)21132+I6(r + 1) 

the expressions for p, tji are 

p = r(l-R)/2, (/ = r(l + R)/2. 

A third auxiliary variable facilitates expressions for a, b: 

Ail-R) ^ylir + 2f^^+16{r + l); a = [i- b=A + a. 

(3.16) 

(3.17) 

(3.18) 

What is missing from the discussion of Ref. 10 is a description of the accessible 
range of skewness, kurtosis and coefficient-of-variation values. This turns out to be a 
complicated problem, with many factors potentially contributing to the boxmdaries of 
the accessible parameter space. For example, both A and R must be real, which means 
that ri3, TI4 are limited to values for which the square-root functions have non-negative 
arguments. Other requirements are p > 1 and q>l. Figure 3.1 shows an accessible area 
i" ^3~il4 space. The upper boundary is part of the line of singularity of r, the lower 
boimdary comes from the condition that p>l and q>l. That is, the solid line in Figure 
3.1 is given by 

Tl4 = 3 + 3Ti32/2, (3.19) 

the condition for which the denominator of r is zero. The requirements p > 1 and q>l 
generate a cubic form in TI32 and TI4. Treated as an equation in TI4, this has three real 
roots, the largest of which for any given r\j^ value is shown as the broken line in Figure 
3.1. The equation of this line is 

'  -3T13V8 n^            1.;, p; •        60 + 54rio^ 114 =Mcos(p + Mv3sm9 +  

where 

M 
_ 3^/(1132+100)(Ti32+4f 

8 50-Ti3^ 

50-Ti3^ 

1     ^        32113(1132-50) (p =—arctan ^o\ \;y    —j 
3 2OOO-36OTI32+TI34 

(3.20) 

(3.21) 

_        1           1           1           1           1           1           1 1 

00 ^^^ ^<X 
- 

^^^   
<D - 

^^  ^ ^^    / 
•<a- - 

•^      /   
y^ 

CM 7^ - 

r—1 1           1           1           1           1           1           1 1 

T13 

FzgMre 3.1; An area ojaccessible values ofr\2 and r]^ for the general p distribution, shown as the 
region between the two lines. It is conjectured that this is the only such area. 
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Although not proven, it is conjectured on tiie basis of algebraic analysis and some trial- 
and-error evaluatioiK that the region between the lines in Figure 3.1 is the only area of 
accessible TI3 and r\^ values for the general p distribution. The highest values are |T|3| = 
2, T|4 = 9, like the exponential distribution. The lowest kurtosis accessible is TI4 = 9/5, 
which can only be achieved when TI3 = 0; in other words, this is exactly the uniform 
distribution. 

The question of the range of tr/ji values accessible has not been explored, but 
it can be expected that the condition a > 0 places an upper limit on a/\i, ihe value of 
which is a function of i\^ and TI4. 

3.3   Discrete Probability Distributions 

The use of a discrete-valued scale of measurement is common in the surveys used to 
gather data on decision soimdness in specific situations. Hence, there is interest in dis- 
crete probability dfetributioi^ for modelling decision soundness. Because the scales 
used often have few levek, for example 0-5 or 1-7, there is no necessity to employ a 
formula-based distribution: it would be feasible to regard a scale with « + 1 leveb as 
having n parameters—namely the probabilities of obtaining each of n of the levels in 
any given trial—subject only to the restriction that the sum of the probabilities for all 
M + 1 levels must be tmity. However, the degree of freedom entailed by this approach 
can be uncomfortably large, giving rise to a desire for a distribution with a small num- 
ber of parameters. There is evidently no theoretical basis for choosing any particular 
probabiHty distribution for tihe purpose of modelling decision soundness, so this Sec- 
tion compares the properties of several discrete probabiHty distributions. 

At first sight, there seem to be few candidates; most references list just three 
discrete distributions with finite domain: the uniform, binomial and hypergeometric. 
More comprehensive texts [6,12,22,23] mention a fourth, the p-binomial distribution, 
which is not, in fact, independent of the other three. It is imstirprising to learn that 
there are many more, but these are treated only in joiunals, speciaHsed texts (e,g, [24]) 
and the most comprehensive compilations on discrete distributions [25,26]. Since tiiese 
other distributions are less known, only the four distributiorw named above are treated 
here in any detail. Of ttiese, the uniform distribution is of httle interest, as explained in 
§3.3,1, The main properties of the other three are collected in Table 3.2. 

Section 3.3,6 lists a few properties of some of the lesser known dtetributions, pri- 
marily as a cursory indication of the range of distributions that have been studied. For 
many of these, our program of expressing parameters in terms of moments cannot be 
carried through because either there are no closed-form expressions for the moments, 
or the expressions that exist are algebraically intractable. 

3.3.1    Discrete Uniform Distribution 
The discrete uniform distribution is© 

Pdu(*)=;^      (0<t<n). (3.22) 

Often, n is determined by external factors, such as the nature of the particular Likert 
scale used; in these cases, this distribution can be regarded as having no parameters. 

© The lower limit of the domain is taken as zero rather ttian the more usual value of unity in 
the interests of compatibility with the other discrete distributions treated herein. 
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Table 3.2: Properties of three discrete probability density functions defined on 0 <t <n. 

Binomial Hypergeometric Beta binomial 

Meann na 

Mode tjj^* L(n + l)«J 

Variance a^ na{l - a) 

Skewness l-2a 

^3 ^b 

Kurtosisri4   3+ 
^b 

nM 

IT 
(n + l)(M + l) 

N + 2 

nM{N-n)(N-M) 

N^(N-l) 

(N-2n)iN-2M) 
N(N-2)ah 

N(N + l)-6n{N-n) 

(JV_2)(A^-3)ah' 

3(A^-l)(Af + 6)        6M{N-M) 

na 

(N-2)(N-3)     (N-2)(N-3)a^^ 

a + b 

(n + l)(a-l) 
a+b-2    . 

nab{a + b + n) 

{a + bf{a + b + l) 

{b-a)(a + b + 2n) 
{a + b){a + b + 2)c!p_l, 

a^ -iab + b^ -a-b+3\jib{a+b + n) 

{a + b + 2)(a + b + 3)apji,^ 

6(a + b + l)[a^~ab + b^) 

ab{a+b-h2){a + b + 3) 

* \xj = largest integer <x.'iix is exactly integral, then there are two equal maximum values, at \x] 
and [xj -1. If an expression exceeds n, then the mode is at n; if less than zero, then it is at zero. 

This point of view is adopted here. Her\ce, the distribution is of little interest in the pre- 
sent context, since there is nothing to adjust. For reference, its moments are: 

Md u=«/2, adu^=w(" + 2)/12,        tl3du = 0, Ti4du=9/5-l/(5adu^).    (3.23) 

3.3.2    Binomial Distribution 

The binomial distribution has a single parameter a satisfying 0 < a < 1. The distribution, 
defined for integer t in the range [0,n], is 

Pb{t) = [l)aHl-ar-K (3.24) 

where the first bracketed factor on the right-hand side is the binomial symbol (Eqn 
(2.41), p. 16). As Table 3.2 indicates, the parameter a equals n^/n. This leads to simple 
expressions for variance, skewness and kurtosis in terms of the mean; values are 
shown in Figure 3.2 for n = 10. As this Figure indicates, the full range of skewness, 
positive and negative, occurs. It is interesting that the minimum value of kurtosis, 
which occurs when ^j, = n/2, equals 3 - 2/n, a little less than the value of 3 applying to 
the Gaussian distribution. 

3.3.3    Hypergeometric Distribution 

The standard form of the hypergeometric distribution reads [6] 

Ph(0 = (f )(„_,)(„)   . (3.25) 

where 0<t<n. The parameters M and N must both be integers and satisfy M>n,N> 
M + n. The requirement for M, N to be integers leads to a complication in the inversion 
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Standard deviation 
—      skewness 

kurtosis 

2.0 3.0 
mean 

5.0 

Figure 3.2: Standard deviation, skewness and kurtosis of the binomial distribution as functions 
of the mean prn = 10. Only the left half of the domain is shown; the standard deviation and 
kurtosis are symmetric about |x^ = 5, the slowness antisymmetric. 

of the expressions for p., a. The expressions (Table 3.2) can be readily inverted if N, M 
are treated as real numbers, called N, Mm the following equatiorw: 

N = n 
H(H-H)-P 

n(n-n)-nCT* 2' M = ii 
Hin-n)-a 

li(n-n)-na 
(3.26) 

To complete the inversion, N, M must be converted to integers to obtain N, M respec- 
tively, but it is not clear how^ to formulate a rule for rounding that will lead to jj, and a 
values as close as possible to the desired values. Presumably each instance should be 
treated on its merits, using trial and error. 

The question of the accessible ranges of \i, a turns out to reveal an aspect of the 
connection tetween this, the binomial and the p-binomial distributions. Hence, it is 
deferred to §3.3.5, where the accessible ranges of skewness and kurtosis for the hyper- 
geometric and P-binomial distributions are also determined. 

3.3.4    Beta-Binomial Distribution 

The P-binomial distribution is [6,12(p.37)] 

ln\B(a+t,b+n-t) 
Pp-hit) B(fl,b) 

(3.27) 

where once again 0 < f < n. The parameters a, b need not be integers but both must be 
greater than zero. The function B{a,b) is the standard beta function (Eqn (2.30), p. 11), 
which is a generalisation of the binomial syntbol to non-integer arguments. This distri- 
bution is also known as the negative or inverse hypergeom^etric distribution [22(pp. 
155-60),23(pp.330-2),26(§6.2.2),271, a terminology that reflects the connection between 
the two distributions [26(§6.2.2),27]. 

Inversion of the equations for mean and variance (Table 3.2) gives results rather 
similar to Equation (3.26), anotiier indication of ttie connections between the two distri- 
butions. Here, we have 
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fl = |J, 
li{n-^)- 

no 
b = {n-ii) 

\iin-^)- 
(3.28) 

■[i{n-\i) na'^-\i{n-\i) 

but this time the expressions can stand as they are, since a, b are not required to be 
integers. The question of the accessible ranges of |ii and a is again deferred to the next 
Section, which also deals with the ranges of skewness and kurtosis accessible to this 
distiibution. 

3.3.5    Comparisons and Ranges of Coefficient of Variation 

Figure 3.3 illustiates the three distributions of interest. This figure differs from Figure 
2.4 in that the latter shows distributions with the same mean and standard deviation. 
The distiibutions in Figure 3.3 aU have the same mean, but different standard devia- 
tions. In fact, with finite parameter values it is not possible for any of the three discrete 
distiibutions to have simultaneously the same mean and standard deviation, as the 
following argument shows. If one expresses each standard deviation CT in Table 3.2 in 
terms of the corresponding mean \i, one obtains 

f^b  =^ib 1 n ^h  =^h  1 .BL]E: 
n JN-l 

^p-b  =Jip-b 
^ip-b a + b + n 

(3.29) 

a + h + 1 

Now n > 1 in all cases and N > n for the hypergeometiic distribution, so it follows that 
distiibutions with equal means have CT^ < a^,, with the equality being approached as 
N -> 00. On the other hand, the P-binomial distiibution shows tihe opposite behaviour— 
ap.], > CTj,—since a and b are both positive; equality is approached as one of a or & goes 

CO 
d 

CM 

E 
(C n 
o 

1     r 

^M hypergeometric 
^H binomial 
^n beta binomial 

rq 

1 

J L 

1 

Figure 3.3: Discrete distributions with a maximum range ofn = 10 and a mean of\i = 7.5. The 
standard deviation of the binomial distribution is fixed by the mean and range to be ■\/i.875 = 
1.369. The standard deviations of the other two distributions were chosen as Gf^ = 1.20 and ao j, 
= 1.50. (See text for discussion of these a values.) 
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to infinity. In summary, distributions with equal means have their standard deviations 
ordered as ojj < oj, < Oa^, with strict inequalities for finite parameter values. Hence, the 
three discrete distributions are not alternatives in the sense that the various continuous 
distributions are; which is chosen depends on the mean and standard deviation that 
one wishes to model. 

The otiher restrictions on the parameters lead to limits on the standard deviations 
attainable with the hypergeometric and p-binomial distributions that mirror those 
given above. In the case of the hypergeometric distribution, N has a lower limit deter- 
mined by the values of nj^ and n. This gives a lower limit on the standard deviation: 

n-l^h 

Oh^UhX- 

-n + ixh 

(^lh<«/2) 

(^ih>«/2). 

(3.30) 

For the (J-binomial distribution, the parameter h can be regarded as determined by the 
values of a, |io|, and «, The lower limit on « (« > 0) ttien places an upper limit on the 
standard deviation: 

«Jp-b < ^lp-b ^/»/^lp-b-l (3-31) 

The various limits on the standard deviatioi^ are depicted as a function of the mean in 
Figure 3.4 for the case of « = 10. In view of the relatively wide range of standard devia- 
tion accessible to the P-binomial distribution, it deserves to be better known. It should 
be noted that, although the region accessible to the hypergeometric distribution is 
shown as a structureless area in Figure 3.4 (the area with darker shading), in fact it con- 
sists of a lattice of feolated points, owing to the requirement that the parameters N, M 

1 beta-binomial 
H hypergeometric 
— binomial 

4.0 6.0 
mean 

10.0 

Figure 3.4: Relationship between standard deviation and mean pr the three discrete distribu- 
tions with n = 10. The heavy line shoivs the dependenm of standard Aviation on mean for the 
binomial distribution; the shaded areas show the accessible values for the other distributions. 
The accessible region for the hypergeometric distribution is actually a lattice of isolated points, 
since the parameters of that distribution must be integers; the density of the lattice increases 
toward the heavy line. 
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be integers. Since N ^>-co corresponds to approaching the heavy line in Figure 3.4 from 
below, the lattice of points increases in density toward the heavy line. 

All three distributions have positive skewness if |a < n/2, zero skewness when jx = 
n/2 and negative otherwise, as expected. The behaviour of the skewness and kurtosis 
of the binomial distribution is shown in Figure 3.2. Corresponding plots for the other 
two distributions are more complicated because their skewness and kurtosis do not 
depend on the coefficient of variation a/|j, alone. That is, ri3 and ri4 for the hypergeo- 
metiic and P-binomial distributions are functions of two variables with domains of 
definition shown as the shaded areas in Figure 3.4. The p-binomial distribution is con- 
sidered first, since it has a well defined parameter inversion (Eqn (3.28)). 

Figure 3.5 shows contour plots of skewness and kurtosis for the p-binomial distri- 
bution. The broken lines in this Figure outline the domain of definition, which is the 
Kghter-shaded area in Figure 3.4. Only the left half of the domain is shown; skewness is 
antisymmetric about \i = n/2 and kurtosis is symmetiic. As Figure 3.5 indicates, both 
skewness and kurtosis increase without limit as p.a^ -^ 0. In terms of distiibution para- 
meters, this corresponds to a -> 0. The skewness is zero when ^o.^ = n/2, that is, when 
b = a. The smallest kurtosis value also lies on this line and at the top of the domain of 
definition, which corresponds to the parameters a —> 0, b ^ 0. The value of this mini- 
mum is 1.0, the smallest encountered in this work for any distribution, whether contin- 
uous or discrete, finite or infinite. In fact, as one tiaces the line ^3.1, = n/2 from bottom 
(fl = 00) to top (a = 0), the kurtosis falls from the binomial-distribution value of 3 - n/2 
(= 2.8 for n = 10) to tinity. That is, low kurtosis is found along the entire Une given by 
l^p-b = "/2 and there is a region at the top of the domain of definition where the kurto- 
sis is smaller than the value of 1.2 applying to the tiniform distribution. 

Figure 3.6 shows corresponding results for the hypergeometric distiibution. This 
Figure was prepared using Equations (3.26) and taking N= N, M = M, that is, ignoring 
the discretisation of the domain. As with the p-binomial distiibution, the skewness of 
the hypergeometiic distiibution is zero on the line ^^ = n/2 and rises without limit as 
\ll^ -^ 0. The inset indicates this rather schematically. (In terms of parameters, JLI^ ~*^ 0 
corresponds to N -^ 00.) The kurtosis also rises without limit as n^ ~* 0- On the line la^ "^ 

5.0 0 
mean 

Figure 3.5: Contours of constant (a) skewness and (b) kurtosis Jbr the ^-binomial distribution 
with n = 10. The broken lines delineate the domain of definition, which is the same as the lighter 
shaded area in Figure 3.4. Only the left half of the domain is shoiun; the skewness is antisym- 
metric about |j,g.j, = 5, the kurtosis symmetric. 
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Figure 3.6: As in Figure 3.5, hut for the hypergeormtric distribution. In this cax, the domain of 
definition is the darker shaded area in Figure 3.4. The inset in each panel shows detail near the 
origin. Because the upper and lower domain boundaries are so clom to each other in this region, 
contours are not discemable in the insets; they lie near to the numbers. 

n/2 (corresponding to N = 2M), the kurtosis is a minimum at the top of the domain, 
equalling the value for ihe binomial distribution (i.e, 3 - n/2 or 2.80 for n = 10). The 
kurtosis rises slowly as one moves down along the line nj^ = n/2. 

3.3.6   Less Well BCnown Distributions 

This Section briefly describes several other discrete distributioiK with a finite domain 
[D,n], The study of some of these has a long history, but they nevertheless do not ap- 
pear in most compilations of distributions. The purpose of this Section is to promote 
awareness of the distributions. The expression of their parameters in terms of their 
momente is carried through only where it is simple. 

(a) Distributions with Zero Parameters 
As explained in §3.3.1, frequently the range n of the distribution domain is set by exter- 
nal considerations; it is not available for variation. Hence, distributions with n as the 
only variable other than the argument are considered in this Report to have no parame- 
ters. Lest it be thought that the discrete uniform distribution is the only one such, three 
others are described here. 

The 'classical matching dfetribution' is of some antiquity. It m the answer to the 
following question: n entities are numbered consecutively l,...,n and are then rearrang- 
ed at random. What is the probability that t of them will have a position in the random 
sequence that matches their number? The result is [25(p.87),26(p.409)](™) 

Pcm(*) = f^S^        (0<t<«). (3.32) 
»• j=0    h 

The moments of this distribution are: p, = 1, CT = 1, TI3 = 1, iri4 = 4. This distribution is the 
finite-domain equivalent of the Poisson distribution, in the sense that the first n factori- 
al moments of the two distributiorw are equal [26(p.410)]. 

(>") The equation in Ref, 26 pqn 10,19) contaiiw a misprint in the lower limit of ttie sum. 
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Figure 3.7 shows the classical matching distribution with n = 10 (left-most bar in 
each group). The values of Pcm(O) ^^'^ Pcm(l) ^^e almost equal, after which p^m values 
faU rapidly with increasing t, as the inset indicates. The last values are Pcm(" - 1) = 0 
and Pcm(«) = !/"!• 

Naor's distribution [26(p.447)] belongs to a type known as 'urn models' [24]. It 
gives the probabihty that t attempts are required to draw a red baU from a urn that ini- 
tially contains one red ball and n-1 white balls, vmder the condition that, every time a 
white ball is drawn, it is replaced with a red ball. Clearly, this sort of problem admits 
almost endless variation. As described above, the domain of Naor's distribution is 1 < f 
<n. A straightforward change of variable gives 

PN(0=,       ''      'T_        {0<t<n) (3.33) 
{n-t)\{n + iy^'^ 

Despite its simple form, there are apparently no known closed-form expressions for the 
moments of this distribution. Figure 3.7 shows the distribution with n = 10 (right-most 
bar in each group). The distribution rises to a maximum at n = 2 and then falls, slowly 
at first. The last value is ^^(n) = n\/{n +1)". 

A more bizarre example of a parameterless distribution is 'Haight's harmonic 
distribution', which is [26(p.470)] 

Puhit)- 2Z 
2Z 

.2t + l. 
- 

2Z 
_2t + 3. 

]        (0<f<LZ-l/2j), (3.34) 

where 2Z is a positive integer and [arj is the largest integer less than or equal to x. There 
does not seem to be any particular application behind the definition of this distribu- 
tion. It has the property that, for large Z values, PHh(0 is zero for considerable ranges 
of t, with isolated nonzero values. Figure 3.7 shows something of this behaviour (mid- 
dle bars of each group), although n = 10 is not large enough for it to be fully developed. 
Expressions for the mean and standard deviation of this distribution are available [26 
(pp.470-1)]. 
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Figure 3.7: Four parameterless distributions with n = 10. The inset shows detail of the classical 
matching distribution for 6 <t <10. See text for further comments. 
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It is not quite right to describe Height's harmonic distribution as parameterless: if 
one wfahes an tipper limit of n, then Z = n + V2 and Z = n + 1 are both possibilities and 
give different distributions, as Figure 3.7 shows. (In this case—n = 10—the most pro- 
nounced difference is that PnhW = 0 for Z = 11, but PHh(5) = 0 for Z = 21/2.) hi this 
seiwe, a parameter variation, albeit highly restricted, can be perforraed. 

(b) One-Parameter Distributions 
The 'riff-shuffle distribution' is related to a problem in combining two packs of cards. 
Its definition is [26(p.234)](n) 

Pr-sW = ("^*)[«""'^(l-«)'+«*(l-«r^]        (0<t<«), (3.35) 

where 0 < a < 1. This distribution is related to the negative binomial distribution. It is 
symmetric about a = 0.5 and tends to 5^ Q as a —> 0 or as a ^^ l.W Expressions for the 
moments are available in terms of incomplete p functions [28]. Examples of the distri- 
bution for n = 10 are shown in Figure 3.8. 

Dandekar introduced several distributioi^ related to the binomial and Pofeson 
distributions, in which the probability of a success in a trial is set to zero for a specified 
number of trials following a successful trial. His first modified Pofeson dfetribution has 
one parameter only [25(p.25),26(p.435)]: 

;=0 ^ 

(3.36) 

where X and v are both greater than zero and \xj is the largest integer less flian or equal 
to X. To have any members in the distribution, v > 1. As with Haight's harmonic distri- 
bution, some variation of v is available once the maximum range n has been chosen: 

o 

= CM 

■i ° 
P 

L 

~~i—I—1—r~ 
■ a = 0.1; ^1 = 0.111 
i a = 0.2; PL = 0.250_ 
■ a = 0.3; n = 0.420 
3 a = 0.5; |i = 0.664 . 

10 

Figure 3.8: Examples of the riff-shuffle distribution for n = 10. Calculated values of the mean 
are shown in the legend. The distribution tends to 5j Q AS a —>• 0 or a —>• 2. 

(") The distribution is incorrectly stated by Johnson et al. [26(Eqn 5.92)], see Ref. 28. 
(o) 8^ „ is the 'Kronecker delta': 5„„ = lif»i = n and zero otherwise. 
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n < V < n + 1, although in this case, the effect of varying v over this range is relatively 
minor. As A, ^ 0, the distribution degenerates to 5^ g- It seems that no simple expres- 
sions for the moments are known. 

Note that Equation (3.36) gives the cumulative probability distribution. The usual 
probability distribution can be calculated by taking successive differences. Figure 3.9 
shows some cases for v = 10.0. On the basis of this cursory numerical inspection, it 
appears that the distribution approaches 8f „ as >. —> cx). 

The Bose-Einstein distribution comes from quantum statistical mechanics. Of the 
three state-occupancy distributior\s of statistical mechanics, it is the only one relevant 
here; the MaxweU-Boltzmann distribution is equivalent to the binomial distribution 
and the Fermi-Dirac distribution is defined for 0 < f < 1 only. AU three distributions are 
examples of urn models. Using notation consistent with that adopted in this Report, 
the Bose-Einstein distribution of state occupancies can be written [24(p.ll2),26(p.421)] 

PB-E(0 = 
{N-l)n\in + N-t-2)l 

(n + N-iy.in-ty 
{0<t< n), (3.37) 

where N > 2 and is integral. This is one case where expressions for the mean and vari- 
ance are simple. That for the mean, \x. = n/N, gives an expression for N, which leads to 
the variance as 

^2,p(n-n)(^ + l) 
n + \i 

In statistical mechanics, n is the number of particles and N the number of states, 
both of which are always very large in physics applications, but the distribution is per- 
ectly well defined for small values also. Figure 3.10 shows four examples with n = 10. 

The Bose-Einstein distribution becomes the discrete uniform distribution when 
N = 2; as N —>^ 00, it degenerates to 5f Q. 
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Figure 3.9: Examples of Dandekar's first modified Poisson distribution with v = 10. Calculated 
values of the mean are shown in the legend. The distribution tends toh^QasX-^O and \ JQ as 
X^>- 00. 
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Figure 3.10: Examples of the Bose-Einstein distribution for n = 10. The distribution equals the 
discrete uniform distribution lohen N = 2 and tends to h^Q as N —» oo. 

(c) Distributions with Two or More Parameters 
The Laplace-Haag matching distribution is a two-parameter generalisation of the clas- 
sical matching dfetribution [26(p.410)]: 

(,j.J!Lf(dHHzizi)i„^^;       (o^f.n), (3.39) 
'^LHi;   Nltl ^   jl{n-t-j)l K f \      f 

where a > 0 and N > max {n, na). In the original Laplace version of the dfetribution, a is 
integral and N = na. However, the distribution is well defined for any positive a, in- 
cluding fl < 1. 

A general expression for the factorial moments of the Laplace-Haag distribution 
is known [26(p.410)]. This leads to expressior^ for the mean and variance that can be 
readily inverted: 

"-   ^ '-, l^=na/\i. (3.40) 2       2 na  + |x -W|J 

The condition N > no on parameter N means that \x<l, regardless of the value of n. 
The 'binomial distribution of order fc* is an example of a class of distributions that 

has been much studied in the last two decades. It is [26(p.431)] 

fc-1 

% 

--1 
P J 

0<t< 

where 0< ^ < 1, 

(3.41) 

(3.42) 
,X|! 

is the multinomial symbol and the inner summations in Equation (3.41) run over all 
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non-negative subscript values that satisfy 
k 
Y,lxi=n-i-kt. (3.43) 
1=1 

This is effectively a 2-parameter distribution. Despite the complication of its definition, 
relatively simple expressions for its mean and variance are known [26(p.431)], but they 
cannot be readily solved in favour of p and k. 

The 'specified occupancy distribution' [26(p.416)] is a two-parameter generalisa- 
tion of the classical occupancy distribution: 

r^(')'f|(j:;^:l,),(i-ff   (o^<^"),       (3.44) 

where & > 0 and c>n are both integers. Once again, expressions for the moments are 
available but they cannot be inverted in closed form. 

As a final example, the 'multinomial distribution', a generalisation of the binomi- 
al distribution, has as many parameters as one desires. Its definition is [25(p.l04),26(p. 
460)] 

Pm(0 = Z -i:(r„r^,...,r^ )tlPp («^ * ^ ns), (3.45) 

where the pj, each separately satisfying 0 < p, < 1, also satisfy the third condition below 
and the summations run over aU. non-negative integers that satisfy the first and second 
following conditions: 

s s s 

Y^rj=n, EFy=^ ZPi=l- (3-46) 
7=0 7=0 7=0 

As a consequence of the last condition, only s of the s + 1 values of p,- are independent, 
but s itself can be considered a parameter, giving s + 1 parameters in aU. The case s = 1 
is the binomial distribution. Quite simple expressions for the moments are known, but 
the task of inverting s + 1 equations is substantial. 

4.   Conclusion 
This report collects, summarises and extends the knowledge of the properties of skew- 
ed probability distiibutions, with the chief goal of providing a means of comparing 
among them. The motivation for this was drawn from various studies in operational 
analysis in which random variables are employed without any firm information on 
their probability distributions. In this situation, it is of interest to look for sensitivity to 
the distiibution chosen. This can best be done by running the model with a variety of 
distributions, which then raises the question of how to compare them. The work began 
with the premise that a viable method for such comparison is to match distribution 
moments, but this requires access to the requisite equations. Surprisingly, these are 
almost completely absent from compilations of information on probability distribu- 
tions. Hence, the main task addressed in this report—and addressed successfully—is 
the derivation and compilation of the required equations for common skewed distri- 
butions. A total of 18 distributions are treated in detail, both finite and semi-infinite. 
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discrete and continuous. These include three non-skewed dfetributions, for compari- 
son. An additional 11 discrete distributions are briefly mentioned. 

In the process, it is noted that most distributions have a limited accessible range 
of the coefficient of variation (the ratio cj/p. of standard deviation to mean). A signi- 
ficant part of this work is the determination of these limits. The results are presented 
above for each distribution; they are also collected in Table 2.5, Table 3.1 and Figure 
3.4. The limits lypically place limite on accessible values of the higher moments, which 
are ihe main indicators of difference between distributioiK with equal mean and stan- 
dard deviation. 

The distributions treated in this report comprise aU of the most corranonly used 
skewed distributiorK. The collected formulae and graphs should be of use to anyone 
using skewed random variates who needs a common and consistent basK for compar- 
ing one distribution with another. 
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